129 research outputs found

    Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.

    Get PDF
    Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus

    Effect of Stocking Rate on Soil-Atmosphere CH4 Flux during Spring Freeze-Thaw Cycles in a Northern Desert Steppe, China

    Get PDF
    BACKGROUND: Methane (CH(4)) uptake by steppe soils is affected by a range of specific factors and is a complex process. Increased stocking rate promotes steppe degradation, with unclear consequences for gas exchanges. To assess the effects of grazing management on CH(4) uptake in desert steppes, we investigated soil-atmosphere CH(4) exchange during the winter-spring transition period. METHODOLOGY/MAIN FINDING: The experiment was conducted at twelve grazing plots denoting four treatments defined along a grazing gradient with three replications: non-grazing (0 sheep/ha, NG), light grazing (0.75 sheep/ha, LG), moderate grazing (1.50 sheep/ha, MG) and heavy grazing (2.25 sheep/ha, HG). Using an automatic cavity ring-down spectrophotometer, we measured CH(4) fluxes from March 1 to April 29 in 2010 and March 2 to April 27 in 2011. According to the status of soil freeze-thaw cycles (positive and negative soil temperatures occurred in alternation), the experiment was divided into periods I and II. Results indicate that mean CH(4) uptake in period I (7.51 µg CH(4)-C m(-2) h(-1)) was significantly lower than uptake in period II (83.07 µg CH(4)-C m(-2) h(-1)). Averaged over 2 years, CH(4) fluxes during the freeze-thaw period were -84.76 µg CH(4)-C m(-2) h(-1) (NG), -88.76 µg CH(4)-C m(-2) h(-1) (LG), -64.77 µg CH(4)-C m(-2) h(-1) (MG) and -28.80 µg CH(4)-C m(-2) h(-1) (HG). CONCLUSIONS/SIGNIFICANCE: CH(4) uptake activity is affected by freeze-thaw cycles and stocking rates. CH(4) uptake is correlated with the moisture content and temperature of soil. MG and HG decreases CH(4) uptake while LG exerts a considerable positive impact on CH(4) uptake during spring freeze-thaw cycles in the northern desert steppe in China

    Young pregnant women's views on the acceptability of screening for chlamydia as part of routine antenatal care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In pregnancy, untreated chlamydia infection has been associated with adverse outcomes for both mother and infant. Like most women, pregnant women infected with chlamydia do not report genital symptoms, and are therefore unlikely to be aware of their infection. The aim of this study was to determine the acceptability of screening pregnant women aged 16-25 years for chlamydia as part of routine antenatal care.</p> <p>Methods</p> <p>As part of a larger prospective, cross-sectional study of pregnant women aged 16-25 years attending antenatal services across Melbourne, Australia, 100 women were invited to participate in a face-to-face, semi structured interview on the acceptability of screening for chlamydia during pregnancy. Women infected with chlamydia were oversampled (n = 31).</p> <p>Results</p> <p>Women had low levels of awareness of chlamydia before the test, retained relatively little knowledge after the test and commonly had misconceptions around chlamydia transmission, testing and sequelae. Women indicated a high level of acceptance and support for chlamydia screening, expressing their willingness to undertake whatever care was necessary to ensure the health of their baby. There was a strong preference for urine testing over other methods of specimen collection. Women questioned why testing was not already conducted alongside other antenatal STI screening tests, particularly in view of the risks chlamydia poses to the baby. Women who tested positive for chlamydia had mixed reactions, however, most felt relief and gratitude at having had chlamydia detected and reported high levels of partner support.</p> <p>Conclusions</p> <p>Chlamydia screening as part of routine antenatal care was considered highly acceptable among young pregnant women who recognized the benefits of screening and strongly supported its implementation as part of routine antenatal care. The acceptability of screening is important to the uptake of chlamydia screening in future antenatal screening strategies.</p

    Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two strains of the silver fox (<it>Vulpes vulpes</it>), with markedly different behavioral phenotypes, have been developed by long-term selection for behavior. Foxes from the tame strain exhibit friendly behavior towards humans, paralleling the sociability of canine puppies, whereas foxes from the aggressive strain are defensive and exhibit aggression to humans. To understand the genetic differences underlying these behavioral phenotypes fox-specific genomic resources are needed.</p> <p>Results</p> <p>cDNA from mRNA from pre-frontal cortex of a tame and an aggressive fox was sequenced using the Roche 454 FLX Titanium platform (> 2.5 million reads & 0.9 Gbase of tame fox sequence; >3.3 million reads & 1.2 Gbase of aggressive fox sequence). Over 80% of the fox reads were assembled into contigs. Mapping fox reads against the fox transcriptome assembly and the dog genome identified over 30,000 high confidence fox-specific SNPs. Fox transcripts for approximately 14,000 genes were identified using SwissProt and the dog RefSeq databases. An at least 2-fold expression difference between the two samples (p < 0.05) was observed for 335 genes, fewer than 3% of the total number of genes identified in the fox transcriptome.</p> <p>Conclusions</p> <p>Transcriptome sequencing significantly expanded genomic resources available for the fox, a species without a sequenced genome. In a very cost efficient manner this yielded a large number of fox-specific SNP markers for genetic studies and provided significant insights into the gene expression profile of the fox pre-frontal cortex; expression differences between the two fox samples; and a catalogue of potentially important gene-specific sequence variants. This result demonstrates the utility of this approach for developing genomic resources in species with limited genomic information.</p

    Cortical Thinning in Patients with Recent Onset Post-Traumatic Stress Disorder after a Single Prolonged Trauma Exposure

    Get PDF
    Most of magnetic resonance imaging (MRI) studies about post-traumatic stress disorder (PTSD) focused primarily on measuring of small brain structure volume or regional brain volume changes. There were rare reports investigating cortical thickness alterations in recent onset PTSD. Recent advances in computational analysis made it possible to measure cortical thickness in a fully automatic way, along with voxel-based morphometry (VBM) that enables an exploration of global structural changes throughout the brain by applying statistical parametric mapping (SPM) to high-resolution MRI. In this paper, Laplacian method was utilized to estimate cortical thickness after automatic segmentation of gray matter from MR images under SPM. Then thickness maps were analyzed by SPM8. Comparison between 10 survivors from a mining disaster with recent onset PTSD and 10 survivors without PTSD from the same trauma indicates cortical thinning in the left parietal lobe, right inferior frontal gyrus, and right parahippocampal gyrus. The regional cortical thickness of the right inferior frontal gyrus showed a significant negative correlation with the CAPS score in the patients with PTSD. Our study suggests that shape-related cortical thickness analysis may be more sensitive than volumetric analysis to subtle alteration at early stage of PTSD

    A physicochemical descriptor-based scoring scheme for effective and rapid filtering of kinase-like chemical space

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The current chemical space of known small molecules is estimated to exceed 10<sup>60 </sup>structures. Though the largest physical compound repositories contain only a few tens of millions of unique compounds, virtual screening of databases of this size is still difficult. In recent years, the application of physicochemical descriptor-based profiling, such as Lipinski's rule-of-five for drug-likeness and Oprea's criteria of lead-likeness, as early stage filters in drug discovery has gained widespread acceptance. In the current study, we outline a kinase-likeness scoring function based on known kinase inhibitors.</p> <p>Results</p> <p>The method employs a collection of 22,615 known kinase inhibitors from the ChEMBL database. A kinase-likeness score is computed using statistical analysis of nine key physicochemical descriptors for these inhibitors. Based on this score, the kinase-likeness of four publicly and commercially available databases, i.e., National Cancer Institute database (NCI), the Natural Products database (NPD), the National Institute of Health's Molecular Libraries Small Molecule Repository (MLSMR), and the World Drug Index (WDI) database, is analyzed. Three of these databases, i.e., NCI, NPD, and MLSMR are frequently used in the virtual screening of kinase inhibitors, while the fourth WDI database is for comparison since it covers a wide range of known chemical space. Based on the kinase-likeness score, a kinase-focused library is also developed and tested against three different kinase targets selected from three different branches of the human kinome tree.</p> <p>Conclusions</p> <p>Our proposed methodology is one of the first that explores how the narrow chemical space of kinase inhibitors and its relevant physicochemical information can be utilized to build kinase-focused libraries and prioritize pre-existing compound databases for screening. We have shown that focused libraries generated by filtering compounds using the kinase-likeness score have, on average, better docking scores than an equivalent number of randomly selected compounds. Beyond library design, our findings also impact the broader efforts to identify kinase inhibitors by screening pre-existing compound libraries. Currently, the NCI library is the most commonly used database for screening kinase inhibitors. Our research suggests that other libraries, such as MLSMR, are more kinase-like and should be given priority in kinase screenings.</p

    Fast reproducible identification and large-scale databasing of individual functional cognitive networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although cognitive processes such as reading and calculation are associated with reproducible cerebral networks, inter-individual variability is considerable. Understanding the origins of this variability will require the elaboration of large multimodal databases compiling behavioral, anatomical, genetic and functional neuroimaging data over hundreds of subjects. With this goal in mind, we designed a simple and fast acquisition procedure based on a 5-minute functional magnetic resonance imaging (fMRI) sequence that can be run as easily and as systematically as an anatomical scan, and is therefore used in every subject undergoing fMRI in our laboratory. This protocol captures the cerebral bases of auditory and visual perception, motor actions, reading, language comprehension and mental calculation at an individual level.</p> <p>Results</p> <p>81 subjects were successfully scanned. Before describing inter-individual variability, we demonstrated in the present study the reliability of individual functional data obtained with this short protocol. Considering the anatomical variability, we then needed to correctly describe individual functional networks in a voxel-free space. We applied then non-voxel based methods that automatically extract main features of individual patterns of activation: group analyses performed on these individual data not only converge to those reported with a more conventional voxel-based random effect analysis, but also keep information concerning variance in location and degrees of activation across subjects.</p> <p>Conclusion</p> <p>This collection of individual fMRI data will help to describe the cerebral inter-subject variability of the correlates of some language, calculation and sensorimotor tasks. In association with demographic, anatomical, behavioral and genetic data, this protocol will serve as the cornerstone to establish a hybrid database of hundreds of subjects suitable to study the range and causes of variation in the cerebral bases of numerous mental processes.</p

    A Common Left Occipito-Temporal Dysfunction in Developmental Dyslexia and Acquired Letter-By-Letter Reading?

    Get PDF
    We used fMRI to examine functional brain abnormalities of German-speaking dyslexics who suffer from slow effortful reading but not from a reading accuracy problem. Similar to acquired cases of letter-by-letter reading, the developmental cases exhibited an abnormal strong effect of length (i.e., number of letters) on response time for words and pseudowords.Corresponding to lesions of left occipito-temporal (OT) regions in acquired cases, we found a dysfunction of this region in our developmental cases who failed to exhibit responsiveness of left OT regions to the length of words and pseudowords. This abnormality in the left OT cortex was accompanied by absent responsiveness to increased sublexical reading demands in phonological inferior frontal gyrus (IFG) regions. Interestingly, there was no abnormality in the left superior temporal cortex which--corresponding to the onological deficit explanation--is considered to be the prime locus of the reading difficulties of developmental dyslexia cases.The present functional imaging results suggest that developmental dyslexia similar to acquired letter-by-letter reading is due to a primary dysfunction of left OT regions

    Functional Connectivity in Tactile Object Discrimination—A Principal Component Analysis of an Event Related fMRI-Study

    Get PDF
    BACKGROUND: Tactile object discrimination is an essential human skill that relies on functional connectivity between the neural substrates of motor, somatosensory and supramodal areas. From a theoretical point of view, such distributed networks elude categorical analysis because subtraction methods are univariate. Thus, the aim of this study was to identify the neural networks involved in somatosensory object discrimination using a voxel-based principal component analysis (PCA) of event-related functional magnetic resonance images. METHODOLOGY/PRINCIPAL FINDINGS: Seven healthy, right-handed subjects aged between 22 and 44 years were required to discriminate with their dominant hand the length differences between otherwise identical parallelepipeds in a two-alternative forced-choice paradigm. Of the 34 principal components retained for analysis according to the 'bootstrapped' Kaiser-Guttman criterion, t-tests applied to the subject-condition expression coefficients showed significant mean differences between the object presentation and inter-stimulus phases in PC 1, 3, 26 and 32. Specifically, PC 1 reflected object exploration or manipulation, PC 3 somatosensory and short-term memory processes. PC 26 evinced the perception that certain parallelepipeds could not be distinguished, while PC 32 emerged in those choices when they could be. Among the cerebral regions evident in the PCs are the left posterior parietal lobe and premotor cortex in PC 1, the left superior parietal lobule (SPL) and the right cuneus in PC 3, the medial frontal and orbitofrontal cortex bilaterally in PC 26, and the right intraparietal sulcus, anterior SPL and dorsolateral prefrontal cortex in PC 32. CONCLUSIONS/SIGNIFICANCE: The analysis provides evidence for the concerted action of large-scale cortico-subcortical networks mediating tactile object discrimination. Parallel to activity in nodes processing object-related impulses we found activity in key cerebral regions responsible for subjective assessment and validation

    The neural substrate of positive bias in spontaneous emotional processing

    Get PDF
    Even in the presence of negative information, healthy human beings display an optimistic tendency when thinking of past success and future chances, giving a positive bias to everyday's cognition. The tendency to actively select positive thoughts suggests the existence of a mechanism to exclude negative content, raising the issue of its dependence on mechanisms like those of effortful control. Using perfusion imaging, we examined how brain activations differed according to whether participants were left to prefer positive thoughts spontaneously, or followed an explicit instruction to the same effect, finding a widespread dissociation of brain perfusion patterns. Under spontaneous processing of emotional material, recruitment of areas associated with effortful attention, such as the dorsolateral prefrontal cortex, was reduced relative to instructed avoidance of negative material (F(1,58) = 26.24, p = 0.047, corrected). Under spontaneous avoidance perfusion increments were observed in several areas that were deactivated by the task, including the perigenual medial prefrontal cortex. Furthermore, individual differences in executive capacity were not associated with positive bias. These findings suggest that spontaneous positive cognitive emotion regulation in health may result from processes that, while actively suppressing emotionally salient information, differ from those associated with effortful and directed control
    corecore